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ABSTRACT 

 
Corrosion inhibitors are commonly used to mitigate corrosion in oil and gas pipelines and the choice of 
inhibitor for a particular oil field depends on the conditions of the field (oil chemistry, water chemistry, 
temperature, etc.). In order to find the optimum formulation for each field condition, extensive laboratory 
tests are carried out which include corrosion inhibitor performance, foaming, and emulsification, to 
name a few. When it comes to measuring the inhibition efficiency of the corrosion inhibitor formulation, 
the focus is on the inhibition from the water phase. However, corrosion inhibitors can have an additional 
advantage of altering the wettability of the steel surface from hydrophilic (water wet) to hydrophobic (oil 
wet) by forming a hydrophobic adsorption layer on the steel surface. In the current work, the ability of 
corrosion inhibitors to alter the wettability of the steel is investigated by measuring the static contact 
angle in a goniometer, as well as the dynamic wetting with a small scale flow apparatus, called a 
doughnut cell, especially designed for this purpose. The doughnut cell makes it possible to measure the 
water and oil wetting of a steel surface using flush mounted conductivity pins that detect whether water 
(conductive fluid) or oil (nonconductive fluid) are covering the surface. The two generic inhibitors tested 
here, a quaternary ammonium chloride and a fatty amine, lowered the corrosion rate, altered the 
surface wetting from hydrophilic (mostly water wet) to hydrophobic (mostly oil wet) and lowered the oil-
water interfacial tension, facilitating water entrainment in the oil. A doughnut cell was used to map out 
how an inhibitor can increase the oil wetting regime for a given water cut. It is a practical tool that can 
be used to help optimizing the inhibitor dosage and maximizing its value. It can also be used in new 
field development, where enhanced oil wetting could be factored into the corrosion allowance 
calculation.    
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INTRODUCTION 

 
Adsorption and efficiency of corrosion inhibitors have been extensively researched for industrial 
application in the oil and gas industry starting in the middle of the 20th century most notably with the 
work of Hackerman starting in 19491. Publication in the literature on corrosion inhibitors has steadily 
been increasing and in the last 6 years has reached more than 500 publications a year. The research is 
nearly exclusively focused on the action of the corrosion inhibitor from the water phase only, ignoring 
the effect of the oil phase. However, the oil phase can enhance the performance of the corrosion 
inhibitor, as well as produce added protection by increased oil wetting and increased water 
entrainment.  
 

A handful of researchers have looked at the effect of corrosion inhibitors on the steel surface 
wettability and/or interfacial tension. McMahon1 observed how adding oleic imidazoline (OI) to the oil 
phase rendered the steel surface completely hydrophobic resulting in droplets of water simply rolling of 
a steel disc. He also saw a drastic decrease in the oil-water interfacial tension with the addition of oleic 
imidazoline, reducing it to less than 1 mN/m with a concentration of only 10 ppm of OI.  
 

Foss, et al. have investigated the effect of corrosion inhibitors on the wettability of corroded steel 
surface,2 iron carbonate covered steel surface3 and ferric covered steel surface.4 Both oleic imidazoline 
and phosphate ester where able to alter the wettability in water-in-oil contact angle measurements from 
hydrophilic to hydrophobic increasing the oil wetting, while cetyltrimethylammonium bromide (CTAB) 
made the surface increasingly water wet. However, for the oil-in-water contact angle measurement, 
only the oxidized ferric corrosion product layer became oil wet in the presence of an inhibitor.4 The 
authors also concluded that the corrosion inhibition of the surface could be greatly enhanced with an 
exposure to the oil phase due to modification of the inhibitor film.  
 

Schmitt and Stradmann5 conducted contact angle measurements by placing oil and water droplets 
on carbon steel specimens in a high pressure test apparatus. The tests were performed under 75 and 
80 °C and 5 bar CO2. The testing fluids were different crude oils, a synthetic oil and brine with 
surfactants (inhibitors and demulsifiers) added into the system. The contact angle measurements were 
made on the clean surface and pre-corroded (6, 24, 48 and 72 hours) surface. It was found that a clean 
carbon steel surface and a pre-corroded surface covered with FeCO3 scale both show hydrophilic 
wetting property. The addition of quaternary ammonium inhibitor under FeCO3 scale formation 
conditions resulted in a hydrophilic surface, however fatty amine and imidazoline based inhibitors 
produced a hydrophobic surface. 
 
The current paper seeks to separate and emphasize the multifaceted roles of corrosion inhibitors which 
are not only acting to reduce corrosion directly but also to facilitate the entrainment of water and render 
the surface hydrophobic (oil wet).  
 

EXPERIMENTAL MATERIALS AND PROCEDURES 

 
Materials 
 

Two generic inhibitor compounds were tested: a quaternary ammonium chloride (“quat”) and a fatty 
amine compound. The composition of the quaternary ammonium chloride solution, included methanol 
as solvents, is given in Table 1, and the composition of the generic fatty amine corrosion inhibitor 
solution is given in Table 2 with acetic acid and methanol used as solvents for the fatty amine 
compound. The model oil was LVT200* with the properties listed Table 3. LVT200 is a clear, light 
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paraffinic distillate consisting of straight chain hydrocarbon (C9 – C16) with C14 being the most 
common fraction. It does not contain any impurities which would affect the corrosion rate.6 Composition 
of the of the UNS G10180 steel is given in Table 4.  
 

Table 1 
Composition of quaternary ammonium 

chloride inhibitor package

 Substance Weight (%) 

Quaternary ammonium 
chloride 

60 – 80 

Methanol 10 – 30 

 
 
 

Table 2 
Composition of fatty amine inhibitor 

package 

Substance Weight (%) 

Fatty amine 
compound 

60 – 80 

Acetic acid 10 – 30 

Methanol 5 - 10 

 
 
Table 3  
Properties of the model oil used in the 

research 

Property Parameter Value 

Density  825 kg/m3 

Viscosity @25C  2.0 mPa.s 

Interfacial Tension  40 mN/m 

Oil-in-Water 
Contact Angle  73 

 
 
 

Table 4  
Elemental composition of the mild steel 

(UNS G10180) sample used as 
a rotating cylinder electrode 
(RCE). 

Elements Weight (%) 

C 0.21 
Si 0.38 
P 0.09 
S 0.05 

Mn 0.05 
Al 0.01 
Fe Balance 

  

Procedure for Corrosion Inhibition Measurements 
 

The corrosion testing was performed in a 2 L glass cell using three electrodes: a rotating cylinder made 
out of UNS G10180 pipeline steel (see Table 4)) with an exposed surface area of 5.4 cm2 as the 
working electrode, a silver/silver-chloride (Ag/AgCl) as the reference electrode located in a Luggin 
capillary tube and a platinum ring as the counter electrode.  The linear polarization resistance (LPR) 
technique was used to measure the corrosion rate.  
 
The glass cell including the Ag/AgCl reference electrode and the platinum counter electrode was filled 
with 2.0 L of 1.0 wt% NaCl solution, deoxygenated by purging with CO2 for 1.5 – 2 hours to reach 
oxygen concentration below 25 ppb. The equilibrium pH of the test solution is 3.8 – 3.9 and was 
adjusted to pH 5.0 by adding a deoxygenated sodium bicarbonate (NaHCO3) solution. The working 
electrode was polished with 400 and 600 grit silicon carbide paper using isopropyl alcohol as the 
cooling fluid. After polishing, the working electrode was cleaned in an ultrasonic bath with isopropyl 
alcohol and air dried with a blower. It was then mounted on the rotating electrode holder and inserted 
into the glass cell maintaining a rotation speed of 1000 rpm. The temperature of the test was 
maintained at 25 C.  
 

A potentiostat was connected to the three electrodes and the open circuit potential was first 
monitored for 5 – 10 minutes until it became stable. Linear polarization resistance (LPR) technique was 
conducted at 30 minutes interval throughout the test to measure the corrosion rate. The polarizing 
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range was ±5 mV from the open circuit potential with scanning rate of 0.125 mV/s. The measured 
polarization resistance, Rp, was compensated with the solution resistance, Rs, measured by the electro-
chemical impedance spectroscopy (EIS) technique. The B-value for calculating the corrosion rate from 
LPR measurement was evaluated with weight loss and potentiodynamic sweeps and a value of 21 
mV/decade was obtained for measurements without an inhibitor as well as with quaternary ammonium 
chloride. However, for the fatty amine measurements the B-value was determined to be 31 
mV/decade.7  
 
The corrosion inhibitor was introduced into the cell with a syringe 1.5 hour after the working electrode 
has been exposed to the solution and separate experiments were made for inhibitor concentrations 
ranging from 0 – 200 ppm. Two series of glass cell experiments were conducted: For the so called 
"pure corrosion inhibition" tests, only the brine phase was present in the glass cell. For the "direct oil 
wet" tests, the paraffinic model oil was added on top of the brine (in 1:9 volumetric ratio) and the 
working electrode was periodically lifted up into the oil phase and left there for 5 minutes rotating at 
1000 rpm and then returned to the water phase for electrochemical measurements. The inhibitor 
concentration is calculated based on the total liquid volume (2 L) and the inhibition efficiency (IE) is 
calculated according to Equation (1) as a function of the inhibited (CRinhibited) and uninhibited (CRuninhibited) 
corrosion rates. 
 

ܧܫ ൌ
௨௡௜௡௛௜௕௜௧௘ௗܴܥ െ ௜௡௛௜௕௜௧௘ௗܴܥ

௨௡௜௡௛௜௕௜௧௘ௗܴܥ
 

(1)

 
 
Procedure for Interfacial Tension Measurements 

A CSC†* DuNouy tensiometer was used to measure the changes of oil-water interfacial tension due to 
the addition of an inhibitor. The tensiometer has a platinum wire ring, which is immersed in the water 
phase. The oil phase is slowly added on top of the water phase. The platinum ring is pulled up and 
when it breaks through the oil-water interface, the required force in units of dyne/cm (equal to the S.I. 
unit mN/m) can be read directly from the dial of the tensiometer.  

Deionized water with 1 wt% NaCl was deoxygenated by purging CO2 gas in a 500-mL breaker for 1 
hour and is adjusted to pH 5.0 by adding NaHCO3. To control the water chemistry during the addition of 
an inhibitor, a plastic glove bag with CO2 gas continuously purging was used. The corrosion inhibitor 
was added to a test tube which contained 15-mL oil and 15-mL brine (deionized water with 1 wt% NaCl) 
with the concentration of inhibitor calculated based on the total volume of liquid. After the addition of an 
inhibitor, the test tube was shaken for a few minutes and then set still for a period of 1 day for the 
inhibitor to partition. At the end of the partitioning period the oil and the water were transferred by 
syringes to a glass container for tensiometer measurements.  

Procedure for Contact Angle Measurements 
 
The contact angle measurements were conducted with the custom built goniometer, shown in Figure 1, 
which can measure both: (a) the contact angle of an oil droplet sitting on a steel surface in a continuous 
brine phase (oil-in-water contact angle) and (b) the contact angle of a water droplet suspended on a 
steel surface in a continuous oil phase (water-in-oil contact angle). Since both of the inhibitors 
described in this study were predominantly water soluble, the results presented below focus on the oil-
in-water contact angle (see Figure 2). The contact angle is always measured through the water phase 
and a larger contact angle (>90) indicates a hydrophobic (preferentially oil wet) surface, while a low 
contact angle (<90) indicates a hydrophilic (preferentially water wet) surface.  
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A carbon steel coupon was polished and placed on a TeflonTM† sample holder inside the goniometer 
vessel. The videos of the droplet were analyzed by an image analyzing software and the contact angle 
 calculated according to Equation 2, where R is the radius of the droplet and L is the length of the 
contact line, both of which are provided by the image analyzing software in the unit of pixels. 
 

ߠ ൌ 180 െ arcsin ൬
ܮ
2ܴ
൰ ∙
180
ߨ

 (2)

For the contact angle tests the vessel of the goniometer was filled with 500 mL of deionized water with 
1 wt% NaCl. A sparger was inserted into the liquid to purge CO2 gas for deoxygenation. The pH of the 
brine phase was adjusted to 5.0 with NaHCO3. A flat API* 5L X65 carbon steel sample was polished 
with 400- and 600-grit SiC paper, washed with isopropanol and dried with a hot air blower. After the 
sample was immersed into the water phase, an oil droplet was placed underneath the surface using a 
10-µL syringe. A baseline test (without inhibitor) was carried out first and then the corrosion inhibitor 
was injected into the continuous water phase measurements taken and the concentration was 
increased stepwise. 

Procedure for Dynamic Wetting Measurements 
A benchtop apparatus, called doughnut cell, was developed to simulate oil-water pipe flow on a 

small scale. The main purpose of the doughnut cell was to determine the occurrence of oil vs. water 
wetting at the bottom of a pipe, at a given water cut and oil velocity and it can also be used for 
corrosion rate measurements. An image of the equipment can be seen in Figure 3a and a sketch of the 
cross sectional view of the rectangular shaped channel where the oil and water are flowing is seen in 
Figure 3b. Oil and water are introduced into the channel at a given ratio and the flow is introduced by 
the top lid rotating. Due to direct contact, the lid shears the oil phase, which in turn shears and possibly 
entrains the water phase. Series of conductivity pins8 are flush mounted at the stainless steel bottom of 
the channel, to detect whether water or oil is wetting the bottom.  

Since the channel has a rectangular cross section, computational fluid dynamics (CFD) modeling was 
used to optimize the geometry of the cross section with regards to secondary flow which might disrupt 
the water entrainment by the oil phase. The width of the annulus is 46 mm and it sits between a 0.46 m 
OD (wall thickness 6 mm) and a 0.35 m OD (wall thickness 2.5 mm) acrylic cylinders. The height of the 
annulus is adjustable and is set here at 70 mm, which results in a working volume of 4.2 liters. Since 
the cross section of the channel is rectangular, the hydraulic diameter is calculated according to 
Equation (3) with H being the height [mm] and W the width [mm] of the annulus.  

ுܦ ൌ
2 ∙ ܪ ∙ ܹ
ܪ ൅ܹ

 (3) 

A Pitot tube was used to measure the oil phase velocity during testing. It was inserted into the cell 
through the bottom and used for measuring in situ circumferential velocity of the oil phase. The pitot 
tube was connected to a differential pressure transducer. The measured differential pressure, Δp (psi), 
can be converted to fluid velocity, u (m/s) according to Bernoulli’s equation (Equation 4), in which 
6894.76 is a unit conversion factor for pressure from psi to Pa and fluid is the density of the fluid 
(kg/m3), which in this case is the density of the model oil (825 kg/m3). 

ݑ ൌ ඨ
2 ∙ ݌∆ ∙ 6894.76

௙௟௨௜ௗߩ
 (4) 

                                                 
* American Petroleum Institute, 1220 L Street NW, Washington, DC 20005, USA 
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